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J .  P H Y S .  A ( P R O C .  P H Y S .  SOC.) ,  1 9 6 8 ,  S E R .  2 ,  V O L .  1 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Many-body optics 
I. Dielectric constants and optical dispersion relations 

R. K. BULLOUGHT 
Kemisk Laboratorium 111, H. C. 0rsted Institutet, Copenhagen, Denmark 
Communicated by S. F. Edwards; MS.  received 18th July 1967, inJFinal form 
23rd Januaipy 1968 

Abstract. This paper is the first of three papers constituting a preliminary mathe- 
matical discussion preparatory to the presentation of a series of papers on the 
observable macroscopic optical properties of a many-body molecular fluid. These 
properties are viewed wholly as consequences of microscopic many-body interactions, 
and the theory to be presented is largely concerned with a microscopic theory of the 
complex refractive index and associated optical response functions : it is nowhere 
phenomenological. In  this paper the classical integral equation, which can be 
derived from the quantal theory and is fundamental to the optical theory, is presented 
in limited form (restricted to two-particle interactions) and rigorously solved. Both 
longitudinal and transverse dispersion relations are obtained and these are generalized 
to include correlations between sets of particles of any number and to two- (and by 
implication to multi-) component molecular-fluid systems. All the longitudinal 
dispersion relations are new results. The theory is strictly a refractive index theory 
and not a dielectric constant theory: in consequence, the longitudinal dispersion 
relations admit frequencies close to, but not precisely at, the zeros of the corresponding 
transverse wave number, and this departure from the conventional picture is associated 
with the theory of optical scattering. The  ‘local’ optical field is due to two- and many- 
particle complex interaction terms : it mixes ‘transverse photons’ and ‘longitudinal 
photons’, and both kinds of photon contribute to each dispersion relation. The  theory 
of how this complex local field describes external scattering, Cerenkov radiation and 
the contribution of virtual photon exchange to the ground-state energy will be 
developed later. For a theory of external scattering it is necessary to break trans- 
lational inyariance : as a consequence, the optical ‘extinction theorem’, due in the first 
instance to P. P. Ewald, plays a very significant role in the theory. 

1. Introduction 
In  the course of the last few years the author has carried out a careful investigation of the 

microscopic processes whereby light is scattered from a fluid in thermal equilibrium. The  
work is a natural extension of the approach outlined by Rosenfeld (1951). The  reason for 
doing it has been because of the importance of light-scattering measurements as a tool for 
investigating the microscopic structure of fluids and because of the intrinsic interest of the 
theory. Two points have emerged from this investigation: firstly, that all optical properties 
of a many-body fluid system of molecules bound only by van der Waals forces can be 
treated within a unified optical theory; secondly, that the machinery is so powerful and the 
light-scattering process so delicate that only the most searching investigation can rid the 
scattering theory of certain paradoxes that at first sight appear within it. 

Preliminary reports of the theory acknowledging the existence of unresolved difficulties 
appear in the papers of the author (Bullough 1962, 1963, 1965, 1967). The  theory has now 
been cast in an illuminating and simplified form and it is intended to present a series of 
papers outlining the form and scope of this theory. In  three preliminary papers it is in- 
tended to investigate the structure and solution of the integral equation which lies at the 
heart of the whole theory: the present paper (I) is one of these. 

The  integral equation is an archetype of self-consistent molecular field calculations. 
It was first studied by Darwin (1924) and appears in generalized form in the work of 
Hoek (1939), the book of Rosenfeld (1951), and the work of Mazur and Mandel (1956), 

t Permanent address : Department of Mathematics, University of Manchester Institute of Science 
and Technology. 
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Mazur (1958), Mazur and Postma (1959), and Mazur and Terwiel(1964), as well as in that 
of the author. Darwin’s integral equation is also treated in Born and Wolf’s (1959) book, 
and it has been extended by Bloembergen and Peishan (1962) to the case of a non-linear 
response. 

A significant feature of the theory is the emergence of the so-called ‘extinction theorem’ 
of Ewald (1912, 1916) and Oseen (1915). This elegant feature characterizes acertain type of 
optical theory. It does not appear in any of the current many-body theories of optical pro- 
perties of the type described, for example, by Pines (1963), and it is of interest to discover why 
not. One reason is that in order to prepare for a discussion of the scattering of light outside 
a material medium it is necessary to break translational invariance : we do this here and hope 
PO discuss the microscopic optics of a translationally invariant system on another occasion, 
A second reason is the emphasis of much of current many-body theory on ‘longitudinal’ 
rather than ‘transverse’ probes: the extinction theorem becomes irrelevant (but only in the 
very limited sense to be indicated in a subsequent paper, which is the second of these three 
preliminary papers (Bullough, to be published, to be referred to as 11)) in the case of a 
longitudinal probe. A number of points concerning the extinction theorem in relation to 
current many-body theory will also be made in 11. These points do not provide an all- 
embracing answer to the question of understanding implicit in these two contrasting 
approaches to many-body optical theories, but at least some of these contrasts are exposed 
there. The  extinction theorem plays a curious and very significant role in the theory of 
external scattering, which we shall outline in the later papers of this series, and its existence 
also has important consequences for the understanding of the theory of binding energy and 
of virtual photons. 

In  the present paper we use the integral equation we study for two purposes: firstly, 
PO provide an introduction to the general optical theory which is to follow later, and, 
secondly, to reach a new physical result. This result is a longitudinal dispersion relation 
for a many-body ‘molecular’ fluid: it does not seem to have been reached before and it is 
therefore given here in as complete a form as possible. This occasions the introduction of 
many-particle correlation functions which play an important role in the later presentation 
of the general theory but lie outside the consequences of the particular integral equation 
we study here. The  longitudinal dispersion relation in either one- or multi-component 
systems seems to be of some importance in a later discussion of ground-state energy; 
but we can defer comment on this aspect of the longitudinal dispersion relation until then. 

Likewise, a discussion of both the extinction theorem and other aspects of the physical 
significance of the longitudinal dispersion relation will be deferred until paper 11. The  
consequences of breaking translational invariance and a number of mathematical and 
interpretative points are deferred until a third paper (Bullough, to be published, to be 
referred to as 111). This third paper therefore constitutes something of a mathematical 
appendix to both I and 11, and to all the consequent work which will rely upon it. The  
general optical theory can be developed most expeditiously only if the reader has early 
access to such an ‘appendix’. It is for this reason that the ‘appendix’ must be presented 
as an early rather than last paper here. 

This completes a first survey of the programme we shall adopt in presenting the micro- 
scopic optical theory, Now we turn to the specific problem of the present paper, the 
solution of the fundamental integral equation and the derivation of the dispersion relations. 

2. The integral equation 
The integral equation we shall study is 

This is not the integral equation which determines even the ‘simplest’ optical property of a 
many-body fluid, namely its true refractive index, but it will become plain from 5 4, and 
indeed from the work which has appeared already, that the solutions of (2.1) in different 
circumstances cover all the situations that arise in the more complete many-body optical 
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theory of the fluid. The  integral equation used by Rosenfeld (1951) is precisely (2.1); 
Darwin (1924) and Born and Wolf (1959) investigate the solution of 

in the present notation. The  integral equations of Mazur and the writer are more compli- 
cated, and the final result of this paper, the most general forms of the dispersion relations 
(4.11~)  and (4.11b), is a consequence of the more general equations. The  particular result 
of these more general equations is that equations (4.11) have to be taken with the interpreta- 
tions (4.19a) and (4.19b), in which many-particle correlation functions appear, instead of 
the interpretations (4.12), in which only g(x,  x’) appears. The  result (4.11b) in either inter- 
pretation is believed to be new. 

The essential physics contained in the integral equation (2.1) is as follows. The  
quantity nP(x, w) is a ‘classical’ dipole moment per unit volume of the fluid induced by an 
incident electromagnetic field E(x, w) of angular frequency w ; n is a number density of 
particles so that P is a dipole moment ‘per particle’. The  scalar .(U) is a ‘classical’ 
polarizability per particle, but is also strictly quantal in the sense that Kramers and 
Heisenberg (1925) showed long ago that the quantum theory of an isolated molecule inter- 
acting with a radiation field yields the natural generalization of the classical form 

e2 f k  
.(U) = -- 2 

me wk2-w2  

in which e and me are the charge and mass of the electron and the wk are characteristic 
frequencies. 

The  f k  are pure numbers, the oscillator strengths, and are essentially matrix elements of 
the dipole operator er: 

We assume that the states (kl can be chosen so that (klr(0) is real. We also assume at this 
stage that the isolated molecules are spherically symmetrical so that we can treat both the 
f k  and .(U) as scalars.? The  many-body quantum theory is also capable of yielding an 
integral equation like (2.1) with polarizabilities .(w) given by (2.3). The  important 
point is that by choosing ‘molecular’ fluids for consideration the states (kl of the isolated 
particles are (by definition of a molecular fluid) weakly perturbed in the many-body system, 
and quantal aspects of the theory can be carried through concealed in the .(U). I t  follows 
that the present investigation has direct application to the many-body optics of real 
molecular-fluid-like systems. 

of the kernel of a time Fourier 
transformation and a time dependence e-iwt associated with a Fourier component of 
frequency w.$ As indicative of the structure of the time-dependent form of (2.1)’ we might 
remark that the polarizabilities .(U) in (2.3) are essentially the time Fourier transforms of 
the retarded commutators of the autocorrelated dipole moment er(t). Let us define 
Heisenberg operators in terms of Zo, the Hamiltonian of a single isolated unperturbed 

t More precisely as isotropic rather than anisotropic second-rank tensors, but the unit second-rank 
tensor can be dropped from the theory. The  factor of 4 follows from (with r = (x, y ,  z)) 

and is a consequence of the assumption of spherical symmetry. 
$ In this choice the author does not follow his previous work. Classically the choice is entirely a 

matter of convention. On the other hand, when tiw is identified with the photon energy E the time 
dependence is exp( + Et/iti) and the photon energies are all positive. The author’s previous work 
corresponds to negative photon energies, rotation of the complex w plane by v and causality if, and 
only if, all singularities lie in the upper half-plane. In these papers we adopt the more usual choice. 

Implicit in these definitions is the time dependence e + 

I(klxlO>la = I(kIyI0)I2 = l(klzlO>lz = ~I(klriO)lz 
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molecule, by 

(2 .5a)  

Then, with 10) the unperturbed ground state, 

e2 

3 i#i 0 
.(U) = - -Tr  [ J* dt exp{i(w + i+} <Ol[r(t), r(0)I IO >] (2.5b) 

In  the expression (2.5b) E ( >  0 )  is the usual positive infinitesimal. In  this picture the 
poles of .(U) lie in the lower half-plane.? We comment on the effect of radiating boundary 
conditions and of complex w (in the form w + ie) on the extinction theorem in 11. It should 
be noted that the form (2.5b) replaces w2 in (2.3) by ( U  and w is necessarily positive if 
Aw is positive. Thus (2.5b) means that the excited-state propagators (wkZ - w 2 ) - I  con- 
tributing to .(U) in (2 .3)  are replaced by 

{wk2- (w+ie )2} -1  = P(w,2 -w2) -1+i~(2w, ) -16 (w-w , ) ;  w > 0. (2 .5~)  

We discuss in later papers how external scattering, and particularly the radiation reaction 
field, replaces the infinitesimal E by a finite width. The  situation is such that we can use 
either form of the excited state propagators, depending on the context. Thus the 6 function 
in ( 2 . 5 ~ )  has nothing to do with absorption and merely represents a formal loss of energy 
scattered into the sink at infinity, implicit in the choice of outgoing boundary conditions. 
The  different forms (2 .3)  and (2.5b) are therefore wholly compatible with each other. 

The  function g(x, x’) is a particle pair correlation function. The tensor F(x, x’; w )  is of 
the second rank and defined by 

1’ = /x-x’I; 

it is the dipole tensor Green function describing the vector field ed(x), say, at x due to the 
point dipole P(x’, w )  at x’, according to the classical formula 

ed(x) = F(x, x’; w )  . P(x’, U ) .  (2 .7a)  

In  this sense it is a linear response function. Indeed, it is the time Fourier transform of the 
retarded commutator 

(2.7b) 

in which e(x, t )  is a Heisenberg operator. This compares with (2.5a, b) ,  with Z0 now the 
Hamiltonian of the free field e(x, t).$ The coupled quantized field e(x, t )  is the time 
analogue of that field 

e(x, w )  {~(w)}-’P(x, w )  - E(x, w )  ( 2 . 7 ~ )  
which is implicit in the present discussion. With time dependence e-iwt associated with a 
Fourier component of frequency w ,  the scalar Green function exp( + z ’k0~)r- l  in (2.6) is an 
outgoing wave .§ 

An explicit form for F(x, x’; w )  is 

F(x, x’; 0) = $iko3{h0(’)(kO~) U +~h2‘1’(koY)(3fP- U)} (2 .8a)  

in which r = x’ - x, E is a unit vector in the direction of r and the hn(’)(x) are spherical 
Hankel functions of the first kind (cf. Rosenfeld 1951, p. 102). It is worth remarking that 

t See second footnote on page 41 1. 
$ The tensor F of (2 .6)  is causal only because of the condition t > t’ in (2.7b) : the commutator is 

the difference between a causal retarded part and a non-causal advanced part (cf. e.g. Power 1965). 
§ See second footnote on p. 411. 
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implicitly we assume Lorentz rather than Coulomb gauge : this is, strictly speaking, 
irrelevant since the tensor F defines the dipole electric field and so is gauge invariant. A 
formal definition of F in Coulomb gauge is 

F(x, x’; U )  = v x v x l ~ - ~ ’ / - l +  R(x, x’; w) (2.8b) 

in which R defines the radiation field at x due to a source at x’ and alone is frequency 
dependent. Since F is given by equation (2.8a), we have explicitly that 

R(x, x’; U )  = 8iko3[ Uho(l)(koy) +{+h2(l)(k0r) -$(ik0~p)-3}(3ff- U)]. (2 .8~)  

We make use of these forms (2.8b, c) in the discussion of 4 4 and in I1 and 111. 
It is convenient to think ofg(x, x’)F(x,x’; w)as a ‘dipole photon’? Greenfunction weighted 

with the probability of finding a particle at x when there is known to be an emitting source 
at x’. In  this picture g(x, x’)F(x, x’; w )  is the probability amplitude of a ‘dipole photon’ 
emitted at x’ being absorbed at x. For definiteness the existence of a particle at x and the 
absorption of a photon at x are taken to be synonymous: thus, by implication, every 
particle is in its ground state and if it is at x will absorb a photon there. For our present 
purposes, of course we could deJineg(x, x’) F(x, x’; U )  as the probability of a photon emitted 
at x’ being absorbed at x. In  practice, one needs to identifyg(x, x’) as the usual particle 
pair correlation function (in this paper taken to be time or w independent) unperturbed 
by light incident on the system. This identification will be valid if the number density 
of excited states is very small, and this will be the case when P is very small. Since 
equation (2.1) is a linear integral equation, we expect that this will be achieved when (and 
even only when) E is very small.$ The  demand for a low density of excited states is 
equivalent to the demand for a low density of quasi-particles as a condition for the validity 
of that concept in many-body theory (compare the quasi-bosons of Hopfield (1958), the 
discussion of quasi-fermions by Pines (1962) or see Abrikosov et al. (1965) perhaps more 
generally). 

From the classical point of view, equation (2.1) is simply a statement that the total field 
at any point x is given by the sum of the externally applied field E(x, w )  and the fields 
scattered from all particles at places other than x. Multiplied by ~ ( w ) ,  this total field yields 
the vector dipole moment P(x, U )  induced in a particle at x. In  fact, an equation very like 
(2.1) has been deduced from the many-electron Schrodinger equation of a molecular fluid 
in Hartree and Born-Oppenheimer approximations (Bullough 1964, unpublished). 
Although for fixed molecular sites these approximations reduce the problem to a sum of 
two-body interactions, the average over molecular sites now replaces the pair correlation 
function by a many-body kernel which can only be expressed in terms of an infinite set of 
particle correlation functions. The  consequences of this generalization are shown in 5 4 of 
this paper (compare the work of Mazur or Bullough’s (1962) paper, and see the papers to 
follow). Thus the kernel of the integral equation describing the situation in the many-body 
system is indeed much more complicated than that of (2.1). Nevertheless, the methods of 
solution of (2.1) are very relevant to the more general case : that is why we study them here. 

All we need to know about the kernel F(x, x’; w)g(x, x’) here is the definition (2.6) of 
F(x, x’; w) and some general properties of g(x, x’), namely that5 

g(x,x’)  - t o  as (x-x’I - t o  
+ I  as Ix-x’I --f CD 

The ‘dipole photon’ is asymptotically transverse and carries unit angular momentum. Its 
contribution to the longitudinal modes will become apparent in the following. 

$ We discuss later whether ‘normal mode’ solutions for P exist when E = 0. 
5 The short-range behaviour simply reflects the fact that two particles (conveniently thought of as 

molecules) cannot occupy the same space. The long-range behaviour is applicable to a fluid (no 
correlation at large pair separations), but not to a crystal where g oscillates finitely at infinity. Similar 
properties must be assumed for the many-particle correlation functions of the general theory which 
are introduced in 5 4. It  is not yet known if these assumed conditions are consistent with the many- 
body interactions we shall finally derive f m m  the theory. 
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and the ‘range’ I of g(x, x’) is ‘small’. By the second condition we shall mean that g(x, x’) - E 
is sensibly different from zerot only for [x-x’j < I, which is ‘small’. The  criterion of 
smallness proves not to be one in comparison with the wavelength 2 ~ r k ~ - ~ ,  but one in 
comparison with the macroscopic dimensions of the system. 

The  implied existence of dimensions to the system eliminates full translational in- 
variance. Nevertheless, we also appeal to such translational invariance in writing g(x, x’) 
as a functiong(r) of r x‘ - x alone. We also appeal to macroscopic isotropy of the system 
to make g(r) a function g(r) of Y = Irj alone. The  consequence of this incompatability of 
our assumptions will be investigated in 111. 

This completes the essential physics contained in the integral equation (2.1). The  
rest of this paper is concerned with its solution and the dispersion relations consequent on 
that solution. For the solution of (2.1) we adapt the method employed by Born and Wolf 
(1959) in solving equation (2.2). We find dispersion relations for apparently acceptable 
longitudinal and transverse solutions of (2.1), but leave open until paper I1 the characteriza- 
tion of these modes and the investigation of their validity. The  longitudinal dispersion 
relation with its many-particle generalization is the new physical result of this first paper 
The  generalization of both dispersion relations to include an infinite series of many- 
particle interactions is very important to the later work. The  infinite series will be inter- 
preted as multiple-scattering terms in the papers which are to follow I, I1 and 111. 

3. The method of Born and Wolf: 
Born and Wolf (1959) solve the integral equation (2.2). The integral equation (2.1) 

has been solved by Rosenfeld (1951) and later workers by rather less general methods 
Kone of the methods indicates how complete are the solutions so obtained. We review 
here Born and Wolf’s solution for the transverse modes of (2.2) and demonstrate that 
there are additional possible longitudinal modes. In  4 4 we generalize the method to solve 
equations (2.1). 

Equation (2.2) is a particular case of equation (2.1), with the choice g(Y) = 1, except 
that this choice does not satisfy the first of the conditions (2.9) that g(r) -+ 0 as Y -+ 0 
-4s a result the integral in (2.2) is undefined. This is so because, as Y -+ 0,s 

1 
F(x, x‘; W )  v v  (-1 = (3%- U ) Y - ~ .  ( 3 . 1 ~ )  

Y 

It is well known, however, that for any finite region V the integral 

( 3 . l b )  

is conditionally convergent at Y = 0 when a small region o about Y = 0 is extracted from 
the region of integration. The  usual choice for o is a small sphere of radius U ,  and the limit 
U + 0 is taken. We shall define the integral in (2.2) in exactly this way. Unfortunately, if 
we choose a different shape for z, the integral has a different va1ue.q This non-physical 
result is, however, a consequence of the non-physical choice g(Y) = 1. We shall see that 
this non-physical result has no effect on the more physical equation (2.1), where g(r) = I1 
at Y = 0.11 

t It is not rigorously necessary that g(x, x’) -1 - Alx -x’[ -1 with y > 0, providing any constant 
term (y  = 0) is properly accounted for: the larger y is, the more convenient the theory becomes. 

$ This method has much in common with a remarkable paper by Planck (1902), who, however, 
does not explicitly demonstrate the optical extinction theorem, 

R(x, x’; U) N O ( r - l )  as r + 0 according to ( 2 . 8 ~ ) .  
7 For example, an ellipsoid of variable semi-axes yields any magnitudes one cares to obtain for the 

elements of the tensor (3.lb)’ which is not isotropic, and subject only to a fixed trace. 
J [  The problem in a sense returns when we compute the ‘self-energy’ of the individual optical 

electrons : these appear as one-body terms in a theory of van der Waals forces (see the discussion in 
§-+I * 
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A second difficulty associated with the kernel F in (2.2) is that 

F N K O 2 (  U -W)  exp(ik,r)r-l as Y -+ CO. (3  4 
The tensor is therefore ‘long range’ but not quite coulombic because of the oscillatory 
exponential factor. Even so, it does not follow that its integral over all space exists. We 
therefore restrict the region of integration in (2.2) to V -  v, where V is finite. We explore 
the possibility of letting V -+ CO in two or more of its dimensions in 11. 

Equation (2.2) is a linear inhomogeneous integral equation for the vector field P(x, w )  
once E(x, w )  is given. We assume that E(x, w )  satisfies Maxwell’s sourceless equations in 
z acuo : 

(3.3a) 
( V 2 + K O 2 ) E ( ~ ,  w )  = 0. (3.3b) 

Physically this assumes there are sources for E at infinity. The  boundary conditions on (2.2) 
are then radiating boundary conditions by (2.6) and sources at infinity by (3.3b). E(x, w )  is 
strictly ‘transverse’ by ( 3 . 3 ~ ) .  

These conditions seem to the author to be a natural description of a real physical 
situation, in which an external light source illuminates a necessarily finite material system. 
They seem to be rather different from what would seem to be implicit in much of current 
many-body theory. In  the spirit of such work one would apparently assume the presence 
of imposed solenoidal currents of density jt(x,  w )  a t  finite points x inside V. In  the usual 
choices of gauge, Coulomb or Lorentz, one can choose a scalar potential cp = 0, if and 
only if, the imposed charge density p(x, w )  is zero. This is consistent with the solenoidal 
condition divj,(x, w )  = 0. 

div E(x, w )  = 0 

With this choice (and time dependence e-iwt) 

E(x, w )  = ik,A(x, w )  (3.4a) 

and div A = 0 implies div E = 0, whilst 

( V2+K02)A(x, w )  = -4nc-Ijt(x, w ) .  (3.4b) 

A space Fourier transform (with kernel exp( - ik . x)) yields 

A(k, w )  = -4nc-Ijt(k, w)(kO2 - k2)-I.  (3.4c) 

Since j t(x, w )  is arbitrary k,  w are four independent scalar variables. It is now apparently 
possible to discuss the response e t ,  say, of the system to the ‘transverse probe’ A(k, U ) .  

Since k, w are independent, the response would be a function et(k, U) ,  say, of them. We 
analyse this situation in more detail in 11.7 

In  contrast, the assumption (3.3b) has Fourier transform 

(kO2--k2)E(k, U )  = 0 (3.5a) 

which can be satisfied only if the wave vector k is real and satisfies the dispersion relation 

/ k /  = W C - ’ .  (3.5b) 

Ht follows that the Fourier transform E(k, w )  is orthogonal to the direction & of k by (3.3a), 
and is then specified as a function of w alone once & is given. A solution of (3.5a) is in fact 

E(k, w )  = k,-2Eo(f, w)S(Ik/-Ko) ( 3  5) 
where E,(&, w )  does not depend on IkJ. Dispersion relations completely control our dis- 
cussion of the integral equations (2.1) and (2.2). We show, following Born and Wolf in 

t Nozihres and Pines (1958), on the other hand, use a ‘longitudinal probe’. For example, let us set 
A = 0, so that j = 0, p satisfies V 2p = -4np and F(k, w) has k, w independent when p is arbitrary. 
They actually make p an oscillating charge density with k and w independent. The  ‘close resem- 
blance’ between the theory of the transverse and longitudinal probes is noted by Pines (1963, p. 198). 
We shall emphasize the considerable differences. 
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particular, that the dispersion relation (3.5b) applicable in vacuo and outside V yields to a 
new dispersion relation inside V.t 

Although E satisfies (3.3b), we expect that P satisfies an equation of the type 

( v2 + m2k02)P = 0 (3.6) 
where m is a pure number, possibly complex, and of value certainly not equal to f 1. The  
parameter m would be the natural choice for the refractive index of the medium lying in V. 

The  integral equation we now wish to solve is 

(3.7) F(x,  x’;  w )  . P(x’, U )  dx ’I . s 8-.U I P(x, w )  = ~ ( w )  E(x, w ) + n  i 
It is convenient first to take the tensor operator of (2.6) outside the integral, but if we do 
this we have to make a correction for a surface integral evaluated on the surface of v: 
we find (cf. Rosenfeld 1951, p. 104) that (3.7) becomes 

E(x, w)+n( vxvx+ko2U exp(ik,r)r-lP(x’, w)dx‘ 

4n- 
3 

+- nP(x, w ) ) .  (3.8) 

The  number 4x13 is a direct consequence of the choice of a sphere for v, and does not depend 
on ko  or x when the radius a of the sphere tends to zero. Because P satisfies the sourceless 
equation (3.6) by hypothesis, it will be without singularities and the surface integral 
correction is due entirely to the singularity in F. For the same reason, there is no singularity 
in the remaining integral and we can integrate over V rather than V - E .  

The integral is now easily evaluated using the condition (3.6), the equation for the 
Green function 

( v2+ko2) exp(ik,?<)r-l = -4nS(r) (3.9) 
and Green’s second identity. We find when m2 # 1 that 

4nP(x, w )  1 
(m2 - 1)ko2 (m2 - l ) k o 2  

I, exp(ik,r)r-lP(x’, w )  ax‘ = -+ - X(X, w )  ( 3 . 1 0 ~ )  

in which 

Z(x, U )  {P(x’, w ) ~  exp(ik,r)r-l . d S -  exp(ik,r)r-ldS. vP(x’ ,  U ) } .  (3.10b) 
c 

Thus, if P satisfies (3.6), we have 

(3.11) 

We now reach a crucial step in the argument. P by hypothesis satisfies (3.6) and E 
satisfies (3.3b). Further, X(x, w )  satisfies (3.3b) because the Green function satisfies (3.9), 
x is interior to the surface X of V and Y = /x’-xI # 0. Thus, at all interior points x, 
terms in (3.11) satisfy either (3.6) or (3.3b). When m2 # 1, this is possible if, and only if, 
equation (3.11) breaks up into two equations, which are 

4mP(x, w )  4n- 
(m2 - 1)ko2 3 

+-nP(x, U ) )  (3.12) 

t This is not, of course, a new result! 
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and 

. nZ(x, w) .  
v x v x  +ko2 U 

(m2 - 1)ko2 
0 = E(x, U)+- (3.13) 

We can suppose? that P(x, U )  can be split into irrotational and solenoidal parts: we set 

with 
P(x, w )  = P,(x, w )  +P,(X, 0) (3.14a) 

divP,(x, w )  = 0; curlP,(x, w )  = 0. (3.14b) 

Then, by operating on (3.12) with the vector operator curl curl and assuming that both 
P,(x, U )  and P,(x, w )  separately satisfy (3.6),: we readily find that (3.12) again splits into 

4rnPt(x, U )  471. 
P,(X, w )  = .(U) ____-- + - nPt(x, U ) )  I m2-1 3 

and an expression which reduces to 

4nnPl(x, w )  477 
P,(x, w )  = .(U) ( V2+k02)---  + - nP,(x, U ) ) .  I (m2 - 1)k,2 3 

Because of (3.6), equation (3 .16~)  is 

or 

871. 
P,(x, w )  = - -nnx(w)P,(x, U ) .  

3 

For non-trivial P,(x, w )  equation (3.15) implies the dispersion relation 

m2-1 477 
m2+2 3 

= -nnx(w) 

(3 . l 5 )  

( 3 . 1 6 ~ )  

(3.16b) 

(3.17a) 

(3.17b) 

This is, of course, just the Lorentz-Lorenz expression for the refractive index m. It is 
quadratic in m with precisely two roots, + /mi and - Iml. If P, is a plane-wave solution, 
for example, the two roots correspond to backward- and forward-going waves. We assume 
that the denominator of (3.17b) is positive. 

For non-trivial P,(x, U )  equation (3.16b) yields a set of characteristic frequencies. If 
.(U) is given by (2.3), these frequencies are the roots of 

(3.18) 

For example, were there only one oscillator of strength unity contributing to ~ ( w ) ,  the root 
would be 

where w p  = (4-rne2me-l)l is the classical plasma frequency for n (optical) electrons per 
unit volume: we accept positive roots only. 

The  result (3.18), together with the observation that the roots w = wk, say, of that 
equation are the zeros of m2 in the transverse dispersion relations (3.17), is well known 
(cf. Knox 1963, Hubbard 1955, for example). As far as the writer is aware, it has not been 
obtained before from the integral equation (2.2). We shall therefore clarify the nature of the 
solution for P,(x, w). 

7 Usual proofs make use of the vanishing of P(x, w )  at infinity. This condition would not 
necessarily be applicable here unless, for example, P(x, w )  = 0 by definition outside V and V is 
finite. 

w = ( W k 2 + $ W P 2 ) 1 / 2  

$ We do not assume that the value of m is the same in each case. 
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Before doing this, however, it may be helpful if we first interpolate a comment on other 
particularly relevant work on longitudinal modes. Firstly, Born and Wolf (1959), explicitly 
using the integral equation (2.2), seek only transverse solutions. On the other hand, a num- 
ber of people have derived longitudinal dispersion relations for what is usually the cubic 
crystal by semi-phenomenological arguments which are to that extent comparable with the 
use of (2.2): Hall (1962), Amos (1963) and Fowler (1964 a), who work with excitons, thus 
use longitudinal-time-like photons, i.e. V,V,/x -x’I -l of (2.8b) alone, for their microscopic 
particle interactions (compare therefore (4.23) below), vest transverse photons in a trans- 
verse field mode and conserve k (cf. § 4). In  a comparable calculation exhibiting longitu- 
dinal modes Ball and McLachlan (1964) use Lorentz gauge and the tensor F of ( 2 . 8 ~ ) .  
Other relevant work is that of Huang (1951) and Born and Huang (1954); we should also 
cite, for example, Agranovitch (1960) in a less than exhaustive list.? 

Hopfield (1958) and Anderson (1964) have considered the longitudinal and transverse 
excitons of a cubic molecular crystal, but explicitly invoke periodic boAiidary conditions, 
again vest radiation-field interactions in transverse field modes, conserve k and do not find 
any condition comparable with the extinction theorem. We comment on this treatment of 
the radiation field in 111: it does not agree in its detailed consequences with those of our 
approach to the problem and cannot yield an external scattering theory when applied to the 
molecular fluid (fully ordered crystals, of course, do not scatter light). I n  contrast, the 
integral equation (2.1) has recently been applied by Obada (1967) to the finite ‘cold’ 
molecular crystal of arbitrary symmetry by choosing a set of periodic 6 functions for the 
pair correlation function g(r) .  The  long range of g ( r )  modifies the extinction theorem 
(cf. 5 4). Both tranverse and longitudinal modes associated with each principal crystalline 
axis are obtained. The  new physical feature is a set of frequency-dependent local radiation- 
field terms which do not vanish even for cubic symmetry (these terms are comparable with 
the integrals (4.12) below and are non-zero for the cubic crystal only because of the 
presence of the radiation-field tensors R(x, x’; w )  of (2.8b)). Nevertheless, there is no 
external scattering. Obada also attempts to marry the extinction theorem into an argument 
directly comparable with that of Hopfield (1958) with only partial success. Fowler (1964 b) 
has also considered the contribution of the radiation field to the local field in the pseudo- 
crystal of DNA. We shall consider these problems of the radiation field raised by work 
already in the literature in I11 and elsewhere. Now we revert again to a discussion of the 
nature of the solution we have obtained here for the longitudinal dipole function P,(x, w ) .  

If wk is a root of the equation (3.18), an apparent solution of the time-dependent 
version of (2.2) is 

where P, is irrotational and satisfies (3.6) with no condition on m2, that is, that parameter 
is arbitrary. In  particular, if the functional form 

P,(x, U) = P, exp( + ik . x) (3.19b) 

is acceptable, P, is parallel to k and k2 is entirely arbitrary. In  contrast, at an arbitrary 
frequency w a plane-wave solution for P, is 

P,(x, t )  = P,exp(-i(wt-k . x)}; ( 3 . 2 0 ~ ~ )  

P,(x, t )  = exp( - iwkt)P,(x, wk) 

P, . k = 0; k2 = {m(w)} w c - 2 .  

At the frequency wk this solution would reduce to 

P,(x, t )  = P, exp( - iwkt) ( 3  20b) 

since k2 = 0 there. This is not a propagating wave, but the arguments we have used still 
apply since m2 f 1. 

We now discuss equation (3.13). The  solutions whose form we have discussed so far are 
acceptable if, but only if, equation (3.13) is also satisfied. This remarkable equation is the 

t We must also quote the important and comprehensive paper by Fano (1956), who studies 
longitudinal and transverse modes in an arbitrary but rather intuitive many-body quantal oscillator 
model. 
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‘extinction theorem’ introduced by Ewald (1912, 1916) in a more physical way. The  
physical content of the equation is that scattering from induced dipole sources on the 
boundary C of V is always precisely sufficient to extinguish the incident field at all points 
inside V.  The mathematical content is that (3.13) is an integro-differential equation for 
B(x, w )  and the normal component of VP(x, w) on the surface C of V,  given E(x, w )  at all 
points x inside V.  Once P(x, U )  and DP(x, w )  on C are determined, P(x, a) at all x in V 
is determined from (3.6) as a boundary-value problem, with the values of P(x, 0) and 
vP(x, w )  on C as boundary conditions. We show in 11, however, by an actual choice of V 
and C that, because of the existence of the longitudinal solutions, the solution for P(x, U )  

is not necessarily unique. This question is tied up with the characterization of the solutions 
as ‘forced’ solutions or ‘normal-mode’ solutions. A normal-mode solution of (2.2) is de- 
fined to be one which satisfies the homogeneous integral equation obtained by setting 
E(x, w )  = 0. We leave the actual characterization of the solutions until paper 11: there 
we characterize the solutions of (2.1) rather than those of (2.2), though the characterization 
is in fact the same for both equations. 

Before we extend the argument of this section to the solution of (2.1) we should prove 
that m2 = 1 is not acceptable for a transverse solution of the equation (2.2). With m2 = 1, 
it is necessary in order to satisfy (3.8) that 

(3 -21) 

(apply the scalar operator V 2 + k o 2  to equation (2.2)). If we take the scalar operator inside, 
it is now necessary that 

Then 
P,(x, w )  = 0 

( V2 + ko2)P,(x, w) = 0. 
whilst (using curl P, = 0) 

(3.22b) 

(3.22c) 

Equation (3.22b) shows that there are no transverse solutions. Equation (3.22~) shows that 
there are potential longitudinal solutions, but this reflects the fact that since (3.16b) leaves 
m arbitrary it can indeed be unity. 

4. Solution of the more general integral equation 
The method of Born and Wolf has the important property of finding an expression for 

the refractive index of a material without demanding an explicit solution for the dipole 
field P(x, U) .  In  this respect it is superior to the methods used by Rosenfeld, Mazur and 
the auth0r.t In order to extend the method to equation (2.1), we must acknowledge that 
g(x, x’) depends on r = Ix’-xI alone only in a translationally invariant isotropic system. 
Further, statistical mechanics definesg(r) only in the limit V 3 CO. This suggests we either 
assume a priori that V is three-dimensionally infinite, or at least we let V -+ CO at the close 
of the calculation. In  the second case we certainly first break translational invariance. In  
either case we must ask for the role of the extinction theorem in the theory since the 
surface C is a priori or ultimately a surface at infinity. It is intuitively plain that the 
breaking of translational invariance is essential to the theory; for then, and only then, is 
momentum not ‘a good quantum number’, and we may expect that then, and only then, 
does the momentum k, of the ‘wave function’ E(x, w )  become replaced by the momentum 
k # k, (with jkl = m(w)k, # k,) of the ‘wave function’ P(x, w) .  

Intuitively we can break translational invariance without introducing any complication 
in g(r). We take V to be very large (that is of dimensions much greater than the correla- 
tion length l of g(r)) and work at points x well. inside V. Then g(x, x’) -+ 1 well inside V,  
and g(x, x’) - 1 will depend on r = x’- x, insignificantly on x alone, and then by local 
isotropy almost solely on r.  

t It is not clear from the argument of these authors that the explicit solution, which apparently 
appears in the expression for m, does not in fact affect the form of that expression. 
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With this result, we rewrite (2.1) as 

F(x, x‘; w )  . P(x‘, w )  dx‘+n#(x, w ;  P)). ( 4 . 1 ~ )  
Ti-v 

The  linear vector functional 9 is defined by 

$(x, w ; P )  E F(x, x’; U )  . P(x’, w)(g(i,) - l} dx’. (4.lb) 

Obviously the whole of the argument of the previous section can be applied if we can show 
that f satisfies either of the wave equations (3.3b) or (3.6) (or splits into parts which do). 

v-v 

We assume P(x’ w )  has the Fourier resolution 

P(x’, w )  = ( 2 ~ ) - ~  j P(k, U )  exp(ik . x’) dk (4.2) 
so that 

&(x, w ; ~ )  = (2+3 j” exp(ik. x) dk 

F(x, x’; w )  . P(k, w )  exp(ik . (x’ - x)}{g(r) - l} dx‘. (4.3) 
The tensor 

F(x, x’; w )  exp(ik . (x’ - x)}(g(y) - l} dx‘ (4.4) LU J(k,  w )  = 

can, by our assumptions about g(y)  - 1, be evaluated over all of space (except for the small 
sphere at x). The  integrand is a function of r = XI-x alone, so that J(k, U )  does not 
depend on x. That tensor is one of the second rank depending only on a single vector k. I t  
must therefore be of the form? 

J(k, W )  = J,(/kl, ~ ) ( U - k k ) + J l ( i k l ,  w)kk (4.5) 
(in which is a unit vector in the direction of k). The scalar quantities J t  and J ,  depend 
only on jk[ (and U) .  Here and throughout Ik/ = (k2)1’2 and is not (k*.k)ll2 with k* the 
complex conjugate of k. Thus (k/  can be, and is, complex. 

We now split P(k, w )  into irrotational and solenoidal parts. These are P,(k, U )  and 
P,(k, w ) ,  where 

Then 
P,(k, w )  A k = 0 and P,. k = 0. (4.6) 

#(x, w;P) = ( ~ T ) - ~ S  exp(ik.  x)dk{J,([kl, w)P@, w)+Jl(lkI, w)P,(k, U)}. (4.7) 

Since, by hypothesis, P(x, U )  satisfies (3.6) and P,(x, w )  and P,(x, w )  do so separately, 

P,(k, U )  = m-2ko-2PfO(k, w)6( lkl -do) ( 4 . 8 ~ )  

P,(k, w )  = ~ ~ - ~ k o - ~ P ~ 0 ( k ,  w)6( ,kl- mko). (4.86) 

There _are_two tensors isotropic in the 2-space orthogonal to k, namely U -kk and 
u(i)t(k) -t(k)u(k). In the latter U, t, k are unit vecto:s forming an orthogonal right-handed system. 
This tensor is excluded since (4.4) is invariant under k + - k because g(r)  and F are invariant under 
r = x’-x + -r. If g(.) is generalized so that it depends on the orientations of the particles at x 
and x’ and is not invariant under r + - r, J is a potential source of coupled oscillator optical rotation 
(Rullough 196 2). 

$ Pi,, and Bto  could depend on Iki; but we show that this satisfies a dispersion relation and so 
depends on w (i.e. we show that m depends only on w). 

these quantities have Fourier transformst 

m mm 
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We now find that 

42 1 

&(x, w ;  P) = Jt(mko, ~ ) ( Z T ) - ~  exp(ik . x) dkP,(k, U )  

+ J,(mko, u ) ( ~ T ) - ~  exp(ik . x) dkP,(k, w )  

= Jt(mk0, w)P,(., w) +J,(mko, w)Pl(x, U). (4.9) 
Hence $ satisfies the wave equation (3.6). Thus it follows that the whole of the argument of 
5 3 is valid, the extinction theorem (3.13) is unchanged but the dispersion relations are now 
derived from 

and 

These are, of course, the transverse dispersion relation 

instead of (3.17b) and the longitudinal dispersion relation 
8" 

nx(w)J,(m,ko, w) = 1 f l n r ( w )  

(4 .11~)  

(4.1 l b )  
J 

instead of (3.16b). 

of the spherical Hankel and Bessel functions introduced in (2.8) they prove to b e t  
The  quantities J ,  and J ,  can be evaluated from (4.4) and their definition (4.5). In  terms 

Jt(mko, w) = +$ikO3 / {g(y) - l}{jo(mkoy)h,,(l)(koy) +~j2(mko~)h~1)(koy)}  dr (4 .12~~) 

J,(mko, 0) = +$ikO3 I {g(y) - l}{jo(mko~)h,'l)(ko~) - j2(mko~)h~1)(koy)} dr. (4.12b) 

The  transverse dispersion relation (4.11~) with (4.12~) was first obtained by Rosenfeld 
(1951)l. The  longitudinal dispersion relation (4.11b) with (4.12b) has not been reported 
before as far as the present author is aware. 

Perhaps the most interesting feature of (4.11b) is that, in contrast with (3.16b), it is a 
dispersion relation which fixes the longitudinal refractive index ml at a given frequency w. 
On the other hand, (4.11b) depends very weakly on m ,  since Jz(mzko ,  w )  is very small, 
Since 

ho(l)(koy)jo(mkoy) N ( Z X ~ Y ) - ~ { ~  + ikor + O(ko2r2)} (4.13a) 

- U  

- V  

h2(l)(k0~)j2(mkO~) N (ik0y)-l{+m2 + O ( k o 2 ~ 2 ) }  
we can see that 

J,(mk,, w) = (1 -Bm2)J,(O, w){l + O(k0Z)) 

(4.13 b)  

(4.14a) 
where I is the correlation length of g(r)  - 1 and 

J,(O, w) = J,(O, w )  = - K O 2  {g(y) - 1}Y dr 3 1: 
N - 3  Zk 0 2 1 - 1  (4.14b) 

Unfortunately, there is a glaring error in the paper of Bullough (1963). It was stated, in effect, 
that J i (mko ,  w )  and Jl(mko, w )  were identical. This would mean that J(k, w )  was isotropic. In  fact, 
the distinction between J t  and J l  was irrelevant to the argument of that paper. 

i, The radiation damping term has been omitted here. 
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T o  order of magnitude we can identify 

{g ( r )  - l} dr = KkBT 

where K is the isothermal compressibility of the fluid at temperature T and K ,  is Boltz- 
mann’s constant. We then find (roughly) that 

J,(o, - g ~ ~ z z - 1  x 10-25 K , ~ P  x 1 0 - 4 .  (4.15) 

The  last step assumes I N cm. Hence the right-hand side of (4.15) is probably rather 
smaller than the figure quoted. If follows that, although (4.11b) is a dispersion relation 
form,, longitudinal modes lie at frequencies w rather close to the roots of the equation (3.18), 
and any small change in frequency induces an enormous change in the wave number of the 
mode mlwc-l.  Evidently in the long wavelength limit m, -+ 0 there are acceptable fre- 
quencies at the roots of 

nsc(w)J,(O, w )  = 1 +-nna(w) (4.16) 

and the wave number jkl is essentially arbitrary, providing it is ‘long’, i.e. providing 
1kI-l 9 1. It follows from this discussion that, although the longitudinal modes no longer 
lie at the zeros of the transverse dispersion relation (4.11~)  for mt,  they do lie close to these 
zeros when the wave number is long. The  zeros of (4 .11~)  are the roots of (4.16) since 

The mathematical formulation of the idea that longitudinal modes should lie at the 
zeros of the transverse refractive index m (or the transverse ‘dielectric constant’ 7n2) is 
demonstrated in (4.10). Because P,(x, w )  satisfies (3.6), 

( V2 + ko2)P1(x, w) = - (m2 - 1)KO2P,(x, U )  

and theJLirst term in the curly bracket in (4.10b) reduces to -hnP, (x ,  w).. This result 
is precisely obtained in (4 .10~)  by putting m2 = 0 in the first term (and replacing P, by P,). 
Similar considerations do not apply to other terms where m appears in (4.10), that is in JE 
and J t ,  and the longitudinal modes are not exact zeros of the transverse dispersion relation. 
For another interpretation we show in this section (near equations (4.23)) that transverse 
photons alone contribute to the term in (m2 - l ) - l  in (4 .10~)  and that longitudinal time-like 
photons alone contribute to the corresponding term reducing to -4?mP,(x, w )  in (4.10b). 

The  interpretation of (4.11b) as a dispersion relation for m ,  assumes that that equation, 
which is a transcendental equation for m 12, has actual roots for m 12..i- Within the same type of 
assumption, the transverse dispersion relation now has more than one root for mt2. For 
example, to the algebraic approximation (4.13) at least, there are obviously two roots for 
mt2. The  additional roots for mi are damped but not spectacularly more heavily than the 
‘fundamental’ root close to the root of (3.17b). 

These particular roots are, however, a consequence of the algebraic approximation and it 
seems probable that any additional solutions of the transcendental equation for mi2 are 
necessarily heavily damped. Even so, such possible additional roots are not fully under- 
stood, We have not yet discussed whether or not the extinction theorem fixes the amplitude 
of a transverse mode. We show in I1 that it is so fixed, providing there is only one root for 
m:. If there is more than one root for m?, the solution contains an arbitrary ratio of the 
amplitudes of the corresponding modes. 

We must also remember that we still have to show that the extinction theorem (3.13) can 
actually be satisfied. However, we show in I1 that it can be and that therefore both of the 
dispersion relations (4.11) are acceptable. It is therefore convenient to exhibit here the 
many-body generalization of the longitudinal dispersion relation (4.1 lb ) .  

From Bullough‘s (1962) paper and from the work of Mazur and Mandel (1956) and 
Mazur (1958) we discover that it is not possible to express the refractive index of a molecular 

t One can always expect to solve (4.11b) for admissible w(1kl). 

8n 

3 

Jl(0, w) = Jt(0,  U ) .  
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fluid in terms of the pair correlation function g(r) alone. From, for example, 
equation (B 10) of Bullough‘s (1962) paper applied to equation (4.08) of the same paper (and 
here simplified to the case of isotropically polarizable particles in a one-component system) 
we find that the generalization of the tensor J(k, w) of our equation (4.4) is 

m 

J(k, w) = 2 {nE(w)}S-lJs(k, U )  (4.17) 
s = 1  

where Jl(k, U )  is defined by the right-hand side of (4.4), and J2(k, w) and J3(k, w) take the 
form 

J2(k, w) = {glZ3(r, r’) -g12(y)g23(y’)} exp(ik . (r +r’)}F(r, U) - F(r’, U) dr dr‘ 

+n-’  JgIZ(y)F(r, U )  . F(r, U )  dr (4 .18~)  

J3(k, w, = JJJ {g1Z34(r? r’, r”) -g12(r)g234(r’, r”) -g123(r, r’)g34(”’) 

+g12(~)gZ3(~’)g34(~”)} exp{ik . (r +r’  +r”)}F(r, w) . F(r’, w) F(r”, U )  dr dr‘ dr ” 

+ n - l  J J k l 2 3 h  r’) -g12(y)g23(y’)} exp(ik * r) 

x F(r, U )  . F(r’, w) , F(r’, w) dr dr‘ 

{g123(r> r’>-g12(y)g13(~r+r’~)) exp{ik (r+r’)} 

x F(r, w) . F(r, w) . F(r+r’, w) dr dr’ 

+n-l  JJ {g123(r, r’)}F(r, U )  . F(r’, U )  . F(r+r’, w) dr dr’ 

+a-”J’{g12(~)}exp( ik .r )F(r ,w) .  F(r ,w) .  F(r,w)dr. (4.18b) 

In  these expressions g 1 2 3 4  is a four-particle correlation function, g123 is a three-particle 
correlation function andg,,(r) g(r), J4(k, w), for example, would contain a leading term 
in g12345 ,  a five-particle correlation function. We shall introduce a ‘cluster’ diagramatic 
notation to handle these terms in later papers, and so it is not worth quoting any more of the 
J s(k, w) explicitly here.? 

Important points about the J,(k, w) are, first, that because the g’s are zero whenever 
two particles approach each other closely we need not exclude the small sphere from any 
region of integration; secondly, the regions of integration are assumed to be over all space, 
although there is a peculiar difficulty in demonstrating the validity of the step of replacing 
integrations over V in (4.18~) and (4.18b) (which is what the theory demands) by integra- 
tion over all space as these expressions assume. We shall discuss this very important diffi- 
culty in later papers because it plays an important role in the theory of extinction due to 
external scattering. Strictly speaking, the expressions (4.18) cannot be correctly written in 
precisely these forms. We shall also show that in discussing the extinction due to scattering 
we to some extent need, and after correcting for this difficulty are certainly able to handle, 
the tensors J,(k, w) at all orders s. 

Therefore leaving this difficulty aside here, we see that, because J,(k, w) and J3(k, w) 
(and indeed all the J,(k, U ) )  are tensors of the second rank depending only on the single 
vector k, everything we have said in showing that the functional $(x, w ; P) of (4.3) takes 

t Nor do we include radiation reaction in (4.18b): it does not occur in (4.18~). 
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the form (4.7) still applies, and consequently the dispersion relations (4.1 1) still follow, 
providing only that we interpret J,(mko, U )  and J,(mko, w )  to be given by 

Jt(m,ko, w )  = 2 { ~ ~ ( w ) ) ~ - ’ ~ ( f i )  . J,(mtkok, w )  .U$) 

30 

(4.19a) 

and 
s = 1  

53 

(4.19b) 
s = 1  

in which u(fi) is a unit vector orthogonal to k. The longitudinal dispersion relation (4,11b), 
with the interpretation of J,(m,ko, w )  given by (4.19b), is the new physical result constituting 
the main result of this paper. We now discuss it. 

It is plain that everything we have said so far about J ,  and J ,  still applies: in particular, 

J@, U) = Jl(0, U). (4.20a) 

Further, (4.18a, b) ,  for example, depend weakly on mJf; so also do all the J , .  Hence the 
longitudinal dispersion relation still lies close to the zeros of mt2 in the transverse dispersion 
relation (4.11a), with J,(O, w )  given now by (4.19~). It is not, however, any true zero of the 
dispersion relation since 

and it is a dispersion relation since J ,  depends on m ,  (or [kl). 
There is also the dielectric constant approximation in which w (rather than m) tends to 

zero. Since, by (4.20u), 
Jt(0, 0 )  = Jl(0, 0 )  (4.20b) 

(and mko = 0 when w = 0, even though m # 0), the ‘transverse’ dielectric constant 
E 

J,(m,ko, 0) # Jl(0, w )  

m,2(0) is given by (4.11~)  as 
-1 

E - 1 = 4~ncc(O) 1 - - nx(0)  - nx(0)Jt(O, 0 ) )  (4.21) 

with J,(O, 0) obtained from (4.19~~). Since at w = 0 the J,(mk,fi ,  w )  do not depend on m 
(or m2), it is not possible to define a longitudinal dielectric constant. Indeed, a longitudinal 
mode as w + 0 is itself a valid concept only if the equation 

{ 4; 

877 
3 

nx(O)J,(O, 0 )  = 1 +-nCt(O) 

is satisfied. If this is so 
477 

-4~a~r (O)  = 1 - 7 n a ( O ) - n ~ ( O ) J t ( O ,  0) .  

(4.22a) 

(4.22b) 
5 

But equation (4.228) shows that the denominator of (4.21) is negative. Hence (since 
a(0) > 0) E- 1 is negative and this means that mt2(w) - 1 is real and negative when w 2: 0. 
But this can only mean that the Lorentz-field term (47/3)na(w) and the ‘local-field’ term 
na(w)J,(mk,, w )  have together moved the poles of .(U) to new poles of mt2(w)-  1 and, 
further, that one of these poles has been pushed1 so that mt2(w)-I  has a pole on the 

t The quantities J , ( k ,  w )  and J t (k ,  U )  depend weakly on k, providing k 2: mtko. This is so because 
the cluster dimensions (correlation range) in J,(k, w ) ,  J $(k, U ) ,  etc., are much smaller than 2n/mtko 
when cho = w is an optical frequency (and mt N 1.5). Even this situation assumes that the system is 
not on the verge of phase separation (when the correlation range becomes very large). At x-ray 
frequencies the reciprocal wave number is comparable with, or less than, the correlation range, but a 
multipole expansion is not valid then and the theory needs correcting. I t  is more relevant here that it 
does not follow that k, as a root of the longitudinal dispersion relation, is necessarily approximately 
equal to m tko N 1 a 5  ko at optical frequencies. If the additional roots for mt are significant, the same may 
be true of these. 

We discuss the changed poles of mt2(w) and how they are pushed by J t (mko,  w )  in later papers. 
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imaginary w axis. Such a pole is usually interpreted as evidence of a ferroelectric phase 
transition or some analogous structural change. Therefore we may exclude such a pole 
from the present discussion. It follows that (4.223) cannot be satisfied and therefore that 
(4.22~) cannot be satisfied. 

If equation (4.22~~) cannot be satisfied we must infer that there is some least frequency 
w o  > 0 such that the longitudinal dispersion relation (4.11b) is valid for some w > oo. 
We have not, of course, demonstrated that the longitudinal modes exhibit a continuous 
frequency spectrum, and, although (4.1 lb) is a dispersion relation, admissible w (viewed 
as functions w(/kl) of /k/) may lie in discrete ranges as /k/ changes.? 

Despite the existence of this lower bound to the admissible longitudinal frequencies 
which satisfy the dispersion relation (4.11b), we shall show later that an integral over all 
frequencies, which in effect contains this longitudinal dispersion relation, taken with the 
interpretation (4.19b)I is an important contributor to the ground-state energy of the 
system. This is probably the main importance of this relation and why we have devoted 
much of this first paper to obtaining it. We obtain its two-component generalization 
immediately below. 

Since the longitudinal modes are governed by the extinction theorem which depends on 
the surface integral (3.10b) and thus on the surface geometry of V ,  we are ultimately obliged 
to consider the effect of that surface geometry. The  simplest choice for this certainly 
shows that none of the longitudinal modes governed by the longitudinal dispersion relations 
which we have obtained in this paper is excited by light. This is a well-accepted concept in 
dielectric theory (cf. e.g. Pines 1963, pp. 201-2), although we are here no longer talking 
about the zeros of a transverse dielectric constant. In  fact, we shall see in I1 that the 
extinction theorem means that in this single simplest case the longitudinal modes cannot be 
excited by light whether that light is strictly transverse or not, and in the author’s view 
this explicit demonstration is particularly perspicuous. However, we shall see that such an 
understanding is very incomplete with other geometries. It has not been possible to elimi- 
nate the possibility that the longitudinal modes can be excited by transverse light of the 
proper frequencies, whilst the case of a longitudinal exciting field needs additional comment. 
Both situations are analysed in 11, and we show in particular that forcing longitudinal 
modes have a response. 

Perhaps the most interesting feature exhibited by the microscopic theory is the way in 
which the ‘longitudinal photons’ help to build up the transverse modes, whilst ‘transverse 
photons’ help to build up the longitudinal modes. That  this is so in the dipole approxima- 
tion, to which we are limited here, follows from the fact that (2.8b) shows that in the dielec- 
tric constant approximation of (4.21) only longitudinal-time-like photons (i.e. the coulombic 
part VxVxlx-x’I-l of F(x, x’; w )  in (2.8b)) contributetothelocal-fieldtermwhichisJ,(O,O). 
We have noted that J,(mko, U )  depends rather weakly on m and also on w at optical or lower 
frequencies. Therefore longitudinal photons continue to play an important role in the 
local-field term J,(mko, w )  at these finite frequencies. Likewise, transverse photons are 
contained in the radiation-field tensor R(x, x’; w )  of (2.8b), and therefore appear in the 
F tensors in the local-field term J,(mk,,  w )  of the longitudinal dispersion relation (4.11b). 
Coupling of this kind is essential to a phenomenon like Cerenkov radiation. We show later 
that the theory of such radiation is contained within the theory associated with the trans- 
verse and longitudinal modes. 

Despite this coupling, it is interesting to see that longitudinal photons are explicitly 
eliminated from the term in (m2 - l)- l  in (3.12) in the passage to the transverse dispersion 
relation implicit in (3.15), and this of course still applies in the passage to the more general 

7 We have noted that, whilst Ikl = m(w)ko  depends strongly on U ,  w(’k1) correspondingly depends 
weakly on lkl. A possible spectrum for the real part of !k(w)/ is a series of steeply rising lines starting 
close to the roots of (3.18) (or more precisely at the roots of (4.11b) when mi = 0, so that Ikl = 0 
there). 

$ The  integrand has the dispersion relation (4.11b) as its poles. I t  follows that there are longitudinal 
modes which contribute to the ground-state energy which are not acceptable in the way that the 
modes (4.11b) (with (4.19b)) are acceptable. The  situation once again depends very much on the 
extinction theorem and is analysed in 11. 
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transverse dispersion relation (4.1 la) .  It is also interesting to see that transverse photons 
are eliminated from the term in (m2- l ) - I  in the passage from (3.12) to (3.16a), and this 
still applies to the passage to the general longitudinal dispersion relation (4.1 l b ) ;  for the 
a uantitv I 

4nnP,(x ,  w )  
= - 4 m  P,(x ,  U )  

(m2 - 1)ko2 ( v2 + ko2) (4.23 a11 

can be thought of, rather roughly, as the Fourier transform 

n ( 2 ~ ) - ~  Cexp(ik .x )dkP, (k ,  w )  . J ( V V [ ~ - x ‘ i - ~ ) e x p { i k . ( x ‘ - x ) ) d x ’  

exp(ik . x) d k P ,  (k, w )  . 
= -4nn P,(x ,  w ) .  (4.23b) 

Particular attention must still be paid to the role of the extinction theorem, and this we 
must discuss in 11. It is, however, plain from (4.23b) that only the Fourier transform 
-4xkk//ki2 of VVix-x’l-l contributes to (3.16b) and the radiation-field tensor 
R(x, x’; w )  of (2.M) is eliminated here. It is plain therefore that coupling between longitu- 
dinal and transverse photons is largely due to the intervention of the spatial correlation 
between the particles described by the correlation functions gI2(r), g,23(r, r’), etc. I n  fact. 
only the Lorentz-field term (which, though longitudinal, i.e. coulombic, in origin, still 
contributes to the transverse dispersion relation) is not a consequence of particle correlation 
in the theory. 

We now turn to the problem of the form assumed by the dispersion relations (4.111 
in a system of more than one component. The  extension of the dispersion relations 
(4.11) with (4.19) to multi-component systems is, in fact, rather obvious. We consider 
the case of two-component systems only. Instead of ( 4 . 1 0 ~ )  we shall obtain 

These two equations are compatible if, and only if, 

477{naa +nbP-nanbEp(Jtaa’ f Jtbb’- Jtab’- Jtbu’)> m,2-1= 
1 - naXJtaa ’ - b P  Jt b b ’ + nanbEp( Jtaa ’ Jt b b ’ - Jta b ’ Jt  b a t )  

in which for compactness here Jtyd’  = 4x/3  + J t r a  ( y ,  6 = a or b). 
Similarly, (4.10b) becomes 

Pl,(X, w )  = % ( U )  w)+naJlaaPla(X, w )  

(4.24a) 

(4.24b) 

( 4 . 2 4 ~ )  

(4.25a) 

(4.25b) 
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This yields the longitudinal dispersion relation 

87T 
naMJlaa + nbPJlbb + nanbKiB 13 + JIbb - Jlab - J l b a )  - (J laaJlbb  - JlabJlba) 

(4.25 c) 

The  quantities which appear in the dispersion relations (4.24~) and (4.25) are the 
obvious analogues in the two-component system consisting of na a particles and nb b particles 
per unit volume of the one-component quantities defined in 5 2 for n particles of a single 
kind per unit volume. When the a and b particles are identical (so that t( = p) and 
7ta+nb = n, equation (4.24~) reduces to (4.11a), and (4.25~) to (4.11b). 

The  only complication in this extension is the definition of the J t  and J,. Instead of 
(4.19) we obtain, for example, 

W 

J tab(mtk0 ,  U )  = 2 U(&> * ~ s a b ( m t @ ,  U )  U(&) (4.26a) 

Jlab(mlkO, = 2 i; * Gsab(mtkOG, w, * 1; (4.26b) 

s = 1  
m 

s = 1  
in which 

s - 1  

y = o  
G s a b  = 2 ( n a & ) s - Y - l ( n b P ) Y  2 gJaO. .ub(mtkOfi,  U> (4.26~) 

and 9 is any distinct permutation of 6 ... p (y  of which quantities are b’s and the re- 
mainder of which are a’s). Thus, in particular, 

G 2 a b  = ( n a S I J a a b  + % b P J a b b )  

G3a  b = (na2M2 J a a a b  + %an b x P  J a b a b  + %an b K P  Jaa b b + n b 2 P 2  Jab b b ) .  

.An example of the tensors J is 

x exp{ik . (r+r’))F(r, w) . F(r’, U )  dr dr’; (4.27a) 
on the other hand, 

Jaba(k, U )  = ss {gaba(r, r ’ ) - g a b ( y ) g b a ( Y ’ ) )  exp{ik - (r+r’)}F(r, ’ F(r’, U )  dr dr’ 

j { g a b ( Y ) ) F ( r ,  * F ( r ~  U )  dr. (4.27b) 

The  dispersion relation (4.24~) has already been presented in greater generality by 
Bullough (1962).? The  dispersion relation (4.2%) is (again as far as the author is aware) a 
new physical result. Everything we have said about the relationship between the two 
dispersion relations (4.11) still applies to the dispersion relations of the two-component 
system. I n  particular, when m ,  = 0, equation (4.25) is a zero of m? in the transverse 
dispersion relation (4.24c), since 

J t Y d ( 0 ,  U> = J l Y d O ,  U ) ;  y ,  S = a or b. 

More generally, the modes which satisfy (4.2%) continue to lie close to the zeros of (4.24~). 
The  discussion of longitudinal dispersion relations following equation (4.16) still entirely 
applies. 

It  has also been given independently by Terwiel (1964) as far as the Gzvs of (4.26~). 
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The longitudinal dispersion relation (4.25) apparently makes an important contribu- 
tion in the theory of the ground-state energy of a two-component system in the formulation 
we present later. 

We are now in a position to treat the many-body theory of a molecular fluid in relation 
to (i) optical scattering, both elastic and, in principle, inelastic ; (ii) microscopic theories of 
critical opalescence in fluids ; (iii) optical screening and resonance broadening; (iv) certain 
many-body aspects of the theory of optical absorption; (v) ground-state energy (a many- 
body theory of van der Waals forces). 

For the scattering phenomena we need to observe only that both m, and m,, as given by 
(4.11) or by (4.24~) and (4.25c), are complex since the J ,  and J ,  are complex: they implicitly 
contain therefore the theory of extinction due to external scattering.? The scattering of 
light is, of course, concerned with the transverse modes; but we can also treat the stopping 
power of the fluid to an incident fast electron which engages the longitudinal modes. In  
the second problem the theory displays the loss of energy as scattered light (partly 
Cerenkov radiation) as we have briefly noted already, and in this it seems rather more 
satisfactory than the treatment given, for example, by Nozihes and Pines (1958) who, 
however, were concerned solely with the plasma.: We hope to present the essential 
parts of the theory of scattering, and particularly of optical scattering, in later papers: 
because of several intricacies of detail in this theory of optical scattering we shall there 
attempt to indicate only the broad features of the theory and its consequences. 

The  theory of optical screening emerges in part in the course of the study of external 
scattering: it is hoped, however, to present an explicitly screened formulation of the 
microscopic optics of a fluid in a later paper. So far this theory appears to be the only one 
which is really applicable to a translationally invariant system (see Bullough 1967). 

The  theory of absorption that we are able to present exploits the microscopic optics 
implicit in the dispersion relations (4.1 l a )  and (4.244 ; the theory therefore deals with 
problems of frequency shifts, changes of absorption intensity induced by local fields and 
screening problems, but the treatment of the actual absorption process is rather rudi- 
mentary. I t  must be discussed later. 

The theory of van der Waals forces which we can develop from the work of this first 
paper is built round a variant of the integral equations we have studied here. The  theory 
seems easily to yield low-energy quantum electrodynamical results like those of Casimir 
and Polder (1948), generalized to all orders of a perturbation theory for polarizable 
particles and in a form applicable to the finite-temperature many-body fluid. I t  is a virtual 
photon theory directly related to the real photon theory of external scattering. It exhibits 
of necessity and without contrivance a Lamb-type level shift of the ground state consequent 
upon the coupling to the radiation field, and it also displays all the currently accepted 
divergences of quantum electrodynamics (necessarily in non-relativistic form). Thus this 
aspect of the theory is surprisingly complete.$ 

An attempt to relate the theory explicitly to the refractive index (motivated by the 
semi-phenomenological approach of Lifshitz and co-workers (cf. e.g. Lifshitz 1956, 
Dzyaloshinskii et al. 1961) has so far failed to surmount the following difficulty. Within 
the sequence of terms (4.18) contributing to (4.17) is a sequence of ‘closed-loop’ multiple- 
scattering terms. On integration over frequency and coupling constant (e2) this sequence 
is an expression for the binding energy of the system. Unfortunately, (4.18) contains 
many additional terms, which apparently do not contribute to the binding energy and yet 
cannot be eliminated. In  this respect the longitudinal dispersion relation of this paper 
offers much greater scope for manipulation. It can be exhibited as the surface of singularity 
of a longitudinal response function, which can then be related directly to the ‘longitudinal’ 

The important contribution of the radiation reaction field has been omitted so far, however. 
$ But compare Fano (1956). 
5 These one-body terms are numerically significant only in very dilute gases. They emerge so 

naturally from the theory, however, that they must be considered to be a significant part of it. 
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part of the total binding energy; and this is why we consider the study of the longitudinal 
modes of the present paper to be important.? 

The  difficulty in relating the theory of van der Waals forces directly to the refractive 
index alone stems from two facts: first, the existence of all powers of the coupling constant 
e2 in (4.19) above; secondly, the role of the radiation field and the consequent dispersion 
relations of (4.11) connecting k and w in the theory. Because of the first point, for example, 
it has proved possible to reach the zero-temperature result of Dzyaloshinskii et al. (1961) 
(a semi-phenomenological theory) only by the drastic approximation of basing the theory 
on the integral equation (2.2) instead of on that most general form of the integral 
equation (2.1) which leads to the results of $ 4 above. It is still necessary to eliminate the 
Lorentz-field term. 

Despite such particular difficulties, the microscopic theories of these several phenomena 
all appear as different aspects of one unified theory based essentially on the generalized 
form of the integral equation (2.1) which is treated in $4 and on the dispersion relations 
(4.11) (with (4.19)) derived from it. They are, of course, all limited by the approximations 
of the theory which are to the following : to molecular fluids, to second-order time-dependent 
perturbation theory applied to the (non-relativistic) time-dependent Schrodinger equation 
and so to the linear perturbing field approximation (linearity in the external field), to a self- 
consistent Hartree (or Hartree-Fock) approximation for the many-body electron motions 
and to a Born-Oppenheimer: approximation for the molecular motions. We largely work 
in the dipole approximation, but this is by no means necessary. Likewise, we usually assume 
that the particles are isotropically polarizable, but, again, this is not always necessary. 

Within these approximations the theory permits a rather striking view of the detailed 
mechanism of the optics of a many-body molecular system. On the other hand, it is import- 
ant as far as possible to cast the theory into one in terms of easily measurable macroscopic 
quantities like the refractive index. We have briefly considered the problem of doing this 
for the binding energy above. Another very important example of this is the passage from 
a microscopic theory of external light scattering to a macroscopic theory, and this problem 
like the van der Waals problem will be taken up in later papers. 

Before doing so, it is convenient to complete the investigation of the several primarily 
mathematical aspects of the theory which have emerged so far. These points are concerned 
with the characterization of transmitted modes and the role of the extinction theorem (to be 
considered with an extension of the physical content of the theory of longitudinal modes in 
II), and with the destruction of translational invariance and the theory of response functions 
to be developed in a mathematical ‘appendix’ as paper 111. We return again to the main 
theme and physical content of the theory thereafter. 
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